High-Fidelity Aerodynamic Design with Transition Prediction, Phase II

Completed Technology Project (2007 - 2009)

Project Introduction

To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to significantly improve upon the integration (performed in Phase 1) of a new sweep/taper integrated-boundary-layer (IBL) code that includes transition prediction with a Cartesian Euler solver developed at NASA. This combined solver will play an important role in the preliminary design of both conventional and unconventional aerospace vehicles traveling at subsonic, transonic, and supersonic speeds. Complex aircraft configurations may be easily analyzed with the practically automated surface intersection and Cartesian mesh generation of the Euler solver. The proposed design-oriented approach to transition prediction will permit rapid assessment of aircraft that exploit natural laminar flow to reduce drag. To facilitate design and numerical optimization using the new aerodynamic analysis, a parameterized geometry engine that can quickly model complex aircraft configurations will be interfaced with the Euler/IBL solver. Desktop Aeronautics will also develop a set of optimization tools well-suited to use with the geometry engine and aerodynamic analysis. This set of tools will permit aerodynamic shape optimization and multidisciplinary design at earlier stages in the vehicle development process.

Primary U.S. Work Locations and Key Partners

High-Fidelity Aerodynamic Design with Transition Prediction, Phase II

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Management	2
Technology Areas	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

High-Fidelity Aerodynamic Design with Transition Prediction, Phase II

Completed Technology Project (2007 - 2009)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead	NASA	Hampton,
	Organization	Center	Virginia
Desktop Aeronautics,	Supporting	Industry	Palo Alto,
Inc.	Organization		California

Primary U.S. Work Locations	
California	Virginia

Project Transitions

November 2007: Project Start

November 2009: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

TX15 Flight Vehicle Systems
 TX15.1 Aerosciences
 TX15.1.3 Aeroelasticity

